A-2 N	IUCLEAR PHYSICS (CIE Pa	ast Paper	Questions)	Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, DAS/400e(IBM), OCP(PITB) teacher 786@hotmail.com
Data & Forn	nulae provided in CAIE pap unified atomic mass unit rest mass of electron rest mass of proton	oer:	$1 \text{ u} = 1.66 \times 1$ $m_{\text{e}} = 9.11 \times 1$ $m_{\text{p}} = 1.67 \times 1$	0 ⁻²⁷ kg 0 ⁻³¹ kg 0 ⁻²⁷ kg
	decay constant		$x = x_0 \text{ ex}$ $\lambda = \frac{0.69}{t_{\frac{1}{2}}}$	$\frac{3}{2}$
Q.1 /{ <i>Q.12/June</i> (a) The decay	<i>2020/41</i> } y of a sample of a radioactive isot	ope is said t	to be random an	id spontaneous.
(i) rando	om			
(ii) spon	taneous.			[1]
(b) A radioact	tive isotope X has a half-life of 1.4 pure sample of this isotope X has the activity of the isotope X in the	hours. an activity e sample af	of 3.6 × 10 ⁵ Bq. ter a time of 2.0	hours.
		activity =		Bq [3]

Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com

(b) Some masses are shown in Table 12.1.

Table 12.1

	mass/u
proton ¹ p	1.007276
neutron ¹ n	1.008665
helium-4 ($^{4}_{2}$ He) nucleus	4.001 506

Show that:

(i) the energy equivalence of 1.00 u is 934 MeV

the binding energy per nucleon of a helium-4 nucleus is 7.09 MeV. (ii)

(c) Isotopes of hydrogen have binding energies per nucleon of less than 3 MeV.

Suggest why a nucleus of helium-4 does not spontaneously break down to become nuclei of hydrogen.

.....

[2]

[2]

Q.3	{ <i>Q.12</i>	/March 2020/42 }		Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com
(a)	Exp	lain what is meant by the <i>binding energy</i> of	a nucleus.	
				[2]
(b)	The	following nuclear reaction takes place:		
. ,		$^{235}U + \frac{1}{2}n \rightarrow ^{144}Cs$	+ ${}^{90}Rb$ + $v_{0}^{1}n$	
	(i)	Determine the values of x and v	X and D U	
	(•)		Y =	
			x =	
			<i>y</i> –	[1]
	(ii)	State the name of this type of nuclear read	tion.	
				[1]
	(iii)	Compare the binding energy per nucleon nucleon of caesium-144.	of uranium-235 with th	ne binding energy per
				[1]
(c)	Yttr	ium-90 decays into zirconium-90, a stable is	sotope.	
	Asa	ample initially consists of pure yttrium-90.		
	Cal zirc	culate the time, in days, when the ratio of the onium-90 nuclei would be 2.0.	e number of yttrium-90 r	nuclei to the number of
	The	half-life of yttrium-90 is 2.7 days.		
		ti	me =	days [3]

Q.4{	Q.12	/June 2019/41 }			Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@ hotmail.com
(a)	A sa At t sho	ample of a radioac ime $(T + \Delta T)$, the rt.	tive isotope contain sample contains (<i>I</i>	The sector is N nuclei of the ison $N - \Delta N$ nuclei of the	tope at time T . isotope. The time interval ΔT is
	Use	e the symbols <i>N</i> , Δ	N, T and ΔT to give	e expressions for:	
	(i)	the average activ	ity of the sample d	uring the time ΔT	
					[1]
	(ii)	the probability of	decay of a nucleus	s in the time ΔT	
					[1]
	(iii)	the decay consta	nt λ of the isotope.		
					[1]
(b)	The	isotope polonium	-208 (²⁰⁸ Po) is rad	ioactive and decays t	to form lead-204 (²⁰⁴ 82Pb).
	The	nuclear equation	208 De N	204 DL 4 L	
	Det		$_{84}^{-84}P0 \rightarrow 7$	$^{+}_{82}$ PD + $^{+}_{2}$ He.	
	Dat	a for nuclear mass	ses are given in Fig	. 12.1.	I
				mass/u	
			⁴ ₂ He	4.002603	-
			²⁰⁴ Pb ²⁰⁸ P	203.973043	
			²⁰⁰ 84Po	207.981 245	
			Fig	. 12.1	
	(i)	Determine, for the	e decay of one nuc	leus of polonium-208	3:
		1. the change,	in u, of the mass		

	2. the total energy, in pJ, released.		Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com
	e	nergy =	pJ [3]
(ii)	The polonium-208 nucleus is initially ${}^{4}_{2}$ He nucleus (α -particle) is found to be	/ stationary. The initial kine less than the energy calculate	etic energy of the ed in (i) part 2 .
	Suggest two possible reasons for this o	lifference.	
	1		
	2		
			[0]
Q.5	{Q.12/June 2018/42}		[2]
(a)	State what is meant by radioactive decay	<i>.</i>	
			[2]
(b)	An unstable nuclide P has decay constant This nuclide D is unstable and decays with decay chain is illustrated in Fig. 12.1.	It λ_{P} and decays to form a nuc th decay constant λ_{D} to form a	lide D. I stable nuclide S. The
	decay constant	decay constant	
	nuclide P	lide D	nuclide S
	Fig	. 12.1	
	The symbols P, D and S are not the nucl	de symbols.	
	Initially, a radioactive sample contains or	ly nuclide P.	

On	e particular fission reaction may be represented by the nuclear e	equation
	$^{235}_{92}$ U + $^{1}_{0}$ n $\rightarrow ~^{141}_{56}$ Ba + $^{92}_{36}$ Kr + 3^{1}_{0} n.	Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com
(i)	On Fig. 7.1, label the approximate positions of	
	1. the uranium $\binom{235}{92}$ U) nucleus with the symbol U,	
	2. the barium $\binom{141}{56}$ Ba) nucleus with the symbol Ba,	
	3. the krypton $\binom{92}{36}$ Kr) nucleus with the symbol Kr.	[2]
(ii)	The neutron that is absorbed by the uranium nucleus has very Explain why this fission reaction is energetically possible.	little kinetic energy.
		[2]
(c)	Barium-141 has a half-life of 18 minutes. The half-life of Krypton-92 In the fission reaction of a mass of Uranium-235, equal numbers of nuclei are produced. Estimate the time taken after the fission of the sample of uranium to <u>number of Barium-141 nuclei</u> number of Krypton-92 nuclei	2 is 3.0 s. of barium and krypton for the ratio
	to be approximately equal to 8.	
	time –	s [3]
Q.7	$u_{110} = \dots$	5 [3]
(a) I	Define the term radioactive decay constant.	
		[2]

(b) State the relation between the activity A of a sample of a radioactive isotope containing N atoms and the decay constant λ of the isotope	Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com
 (c) Radon is a radioactive gas with half-life 56s. For health reasons, the level of radon in air in a building is set at 1 radon atom for every 1.5× 1 mol of air in the building is contained in 0.024m³. Calculate, for this building, (i) the number of molecules of air in 1.0 m³. 	[1] maximum permissible <10 ²¹ molecules of air.
number: (ii) the maximum permissible number of radon atoms in 1.0 m ³ of ai	ir,
number: (iii) the maximum permissible activity of radon per cubic metre of air	
Activity:	Bq [5]
Q.8 Strontium-90 decays with the emission of a β -particle to form Yttrium-90 represented by the equation g_{38}^{90} Sr $\rightarrow g_{39}^{90}$ Y + $_{-1}^{0}$ e + 0.55 MeV.	0. The reaction is
The decay constant is 0.025 year^{-1} .	
(a) Suggest, with a reason, which nucleus, $\frac{90}{38}$ Sr or $\frac{90}{39}$ Y, has the great	ater binding energy.
(b) Explain what is meant by the decay constant.	[2]
	וכז
	[4]

(c) At the time of purchase of a Strontium-90 source, the activity is 3.7×10 ⁶ Bq.	Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com
(i) Calculate, for this sample of strontium,	
1. the initial number of atoms,	
number: 2. the initial mass.	[3]
mass:	Kg [2]
(ii) Determine the activity A of the sample 5.0 years after purchase, e as a fraction of the initial activity A_0 . That is, calculate the ratio	expressing the answer $\frac{A}{A_0}$.
ratio =	[2]

1 (<u>2.12/J</u>	une 2020/41	
1	2(a)(i)	time at which a nucleus will decay cannot be predicted or	B1
_		constant probability of decay of a nucleus	
1	2(a)(ii)	decay (of a nucleus) not affected by environmental factors	B1
	12(b)	$A = A_0 e^{-\lambda t}$ and $\lambda = \ln 2 / t_{y_2}$	C1
		= $3.6 \times 10^5 \times \exp[-(2 \times \ln 2) / 1.4]$	C1
		or	
		$A = A_0 \times 0.5^N$	(C1)
		= $3.6 \times 10^5 \times 0.5^N$ where N = 2 / 1.4	(C1)
		$A = 1.3 \times 10^5 \mathrm{Bq}$	A1
1	l2(c)(i)	smooth curve, starting at (0, 3.6×10^5) and passing through (1.4, 1.8×10^5) and (2.0, 1.3×10^5)	B1
1	2(c)(ii)	(activity of sample is greater than activity of X so) there must be an additional source of activity	C1
		the decay product (of isotope X) is radioactive	A1
2 (Q.12/J	une 2020/42	
	12(a)	difference between mass of nucleus and mass of (constituent) nucleons	M1
-		where nucleons are separated to infinity	A1
1	2(b)(i)	$E = mc^2$	C1
_		$= 1.66 \times 10^{-27} \times (3.00 \times 10^8)^2 / (1.60 \times 10^{-13}) = 934 \text{ MeV}$	A1
1	2(b)(ii)	mass defect = 2 × (1.007276 + 1.008665) - 4.001506	B1
		(= 0.030376)	
_		binding energy per nucleon = (0.030376 × 934) / 4 = 7.09 MeV	A1
	12(c)	binding energy per nucleon is much greater	M1
		so would require a large amount of energy to separate the nucleons in helium	A1
		or	
		amount of energy released in forming hydrogen isotopes	(M1)
	0.10/1	is less than energy required to break apart helium nucleus	(A1)
3 (2.12/M 12(a)	(minimum) energy required to separate the nucleons	M1
	. ,	to infinity	A1
1	2(b)(i)	37	B1
	2(0)(1)		
1:	2(b)(ii)	fission	B1
12	2(b)(iii)	binding energy per nucleon smaller for U than for Cs	B1
_	12(c)	Current ratio 2 Y to 1 Zr, so initially 3 Y	C1
		$2 = 3 e^{-\lambda t}$	
		$\lambda = 0.693/2.7$	
		$\ln(2/3) = -(\ln 2/27)t$	C1
		t = 1.6 days	
		$(\frac{1}{2})^{n} = \frac{2}{3}$	(C1)
		n = 0.585	(C1)
		time = 0.585×2.7	(A1)

Q.12/.	June 2019/41	
12(a)(i)	$\Delta N / \Delta T$	
12(a)(ii)	$\Delta N/N$	
12(a)(iii)	$\Delta N / (N \Delta T)$	
12(b)(i)	1. mass change = 5.60 × 10 ⁻³ u	
	2. energy = $(\Delta)mc^2$	
	$= 5.6 \times 10^{-3} \times 1.66 \times 10^{-27} \times (3.0 \times 10^{8})^{2}$	
	$(= 8.36 \times 10^{-13} \text{ J})$	
	= 0.84 pJ	
12(b)(ii)	kinetic energy (of recoil) of lead (nucleus)	
	energy of γ -ray photon	
Q.12/.	<i>June 2018/42</i>	
12(a)	emission of particles/radiation by <u>unstable nucleus</u>	
	spontaneous emission	
12(b)(i)	P – the curve that starts with a high number	
	D – the curve with the peak	
	(one correct 1 mark, all three correct 2 marks)	
12(b)(ii)	$\lambda t_{y_2} = 0.693$	
	$\lambda = 0.693 / (60.0 \times 60)$	
	$= 1.93 \times 10^{-4} \mathrm{s}^{-1}$	
12(c)	half-life of F is much shorter than half-life of E	B1 B1 A1 C1 C1 A1 B1 B1
	nuclei of F decay (almost) as soon as they are produced	
Q.7/N	ov. 2007/4	
(a) ∈	energy required to (completely) separate the nucleons (in a nucleus)E	31
(b) (i) U labelled near right-hand end of lineE	31
	Ba and Kr in approximately correct positionsBa and Kr in approximately correct positions	31
(i	i) binding energy is $A \times E_{\rm B}$ E	31
	eitherbinding energy of U < binding energy of (Ba + Kr)or E_B of U < E_B of (Ba + Kr)E E_B of U < E_B of (Ba + Kr)	31
	(runtan 02 raduced to 1/8 in 0 c	11
(C) n	n 9 s, very little decay of Barium-141N	Л1 Л1
S	o, approximately 9 sA	1
	$\beta_{\rm Kr} = 0.231 \text{ or } \lambda_{\rm Ba} = 6.42 \times 10^{-4}$ (M1)	
8	$B = e^{-\lambda B \times t} / e^{-\lambda K \times t} $ (C1)	
	-0.0 (A1)	